
СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

ПЕРЕМЕННОГО ТОКА

CHITO - 4

1. Техника безопасности

Перед включением стабилизатора внимательно прочтите и изучите паспорт.

Не выполняйте самостоятельно работы по ремонту и обслуживанию стабилизатора, если Вы не имеете соответствующих навыков и специального инструмента.

1.1. Электробезопасность

Запрещается:

- эксплуатировать устройство с нарушенной изоляцией электропроводки;
- эксплуатировать устройство без заземления;
- касаться руками оголенных кабелей и электрических соединений;
- эксплуатировать стабилизатор при прямом попадании жидкости (дождь, снег и т.п.), а также в условиях повышенной влажности.

Стабилизатор поставляется в состоянии, соответствующем правилам техники безопасности.

Не удаляйте защитные приспособления!

1.2. Пожаробезопасность

Не допускайте эксплуатации стабилизатора вблизи от лекговоспламеняющихся материалов.

1.3. Общие меры безопасности

- перед запуском стабилизатора прочитайте и изучите паспорт стабилизатора;
- не допускайте детей даже к не работающему стабилизатору;
- не накрывайте стабилизатор посторонними предметами во время работы (может возникнуть аварийная ситуация или возгорание посторонних предметов);
- не допускайте попадания внутрь посторонних предметов;
- не закрывайте вентиляционные отверстия;
- запрещается подключать нагрузку, превышающую 3,5 кВт;
- перед включением стабилизатора, если он хранился или перевозился при температуре ниже 0°C, необходимо, чтобы он простоял при комнатной температуре не менее 5 часов.

2. Назначение

Стабилизатор напряжения переменного тока однофазный предназначен для обеспечения стабилизированным напряжением всех видов электропотребителей при питании от сети с неудовлетворительным качеством напряжения.

Стабилизатор обеспечивает:

- стабилизацию выходного напряжения на уровне 220 В +7.5% 10% (+5% -7.5%) при изменении входного напряжения от 130 до 270В (от 150 до 260 В) частотой $50\pm2.5\Gamma$ ц;
- защитное отключение потребителей при повышении входного напряжения более 285 В (270 В) с последующим автоматическим подключением нагрузки при снижении входного напряжения до рабочего уровня;
- защиту от короткого замыкания и длительного перегруза на выходе;
- режим «транзит» в аварийной ситуации;
- защиту потребителей от перенапряжения в режиме «транзит» в диапазоне напряжений 253-263 В;
- тепловую защиту автотрансформатора в интервале температур 75-98°C;
- работу во всем диапазоне нагрузок от холостого хода до Риманс;
- нормированное (4,5-7,5 с) отключение потребителей при кратковременном исчезновении питающей сети (исключает повреждение импульсных источников питания потребителей).

Стабилизатор не вносит искажений в форму входного напряжения. Время реагирования на изменение входного напряжения составляет 20 мс.

Стабилизатор рассчитан на непрерывный круглосуточный режим работы в закрытых отапливаемых помещениях при:

- температуре окружающей среды от 1 до 40°C;
- относительной влажности от 40 до 80% (при $25\pm10^{\circ}$ C);
- атмосферном давлении от 630 до 800 мм рт.ст.

Собственное потребление электроэнергии на холостом ходу 10-20 Вт.

3. Технические характеристики

Стабилизатор выполнен по схеме автотрансформатора и не имеет гальванической развязки.

Стабилизатор имеет 7 ступеней регулирования напряжения.

У моделей СНПТО 4(У) с узким диапазоном входного напряжения $150\text{-}260~\mathrm{B}$ шаг регулирования составляет $15~\mathrm{B}$, диапазон выходного напряжения $220~\mathrm{B} + 5\text{-}7,5\%$.

У моделей СНПТО 4(Ш) с широким диапазоном входного напряжения $130\text{-}270~\mathrm{B}$ шаг регулирования $20~\mathrm{B}$, диапазон выходного напряжения $220~\mathrm{B}$ +7,5-10%.

N n/n	Наименование параметра	снпто 4(у)	снпто 4(Ш)
1	Диапазон входных напряжений, В	150-260	130-270
2	Выходная мощность, кВт не более а) максимальная;	3,5	3,5
	б) при нижнем значении входного напряжения	2,1	2,4
3	Номинальное выходное напряжение, В	220	220
4	Отклонение выходного напряжения от номинального, %, не более	+5 -7,5	+7,5 -10
5	Защитное отключение при повышении входного напряжения более, В	270	285
6	Ток срабатывания автоматического выключателя, А	16	16
7	Габариты, мм (высота-ширина-глубина)	350 - 420 - 160	
8	Масса, кг, не более	22	22,5

4. Комплект поставки

В комплект поставки входят:

- стабилизатор напряжения - 1 шт.;

- паспорт - 1 шт.;

крепежный комплект - 1 шт.;

– индивидуальная упаковочная тара - 1 шт.

5. Устройство и принцип работы

Стабилизатор (рис.1) выполнен в металлическом корпусе прямоугольной формы, который позволяет эксплуатировать его как в настенном, так и в напольном варианте. Все функциональные узлы стабилизатора расположены на шасси, которое закрыто лицевой частью корпуса и днищем. Для удобства переноски стабилизатора имеются ручки.

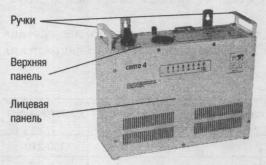


Рис. 1. Стабилизатор напряжения

На лицевой панели корпуса (рис.2) расположены светодиодные индикаторы, показывающие уровень входного напряжения в режиме «стабилизация», автоматический выключатель.

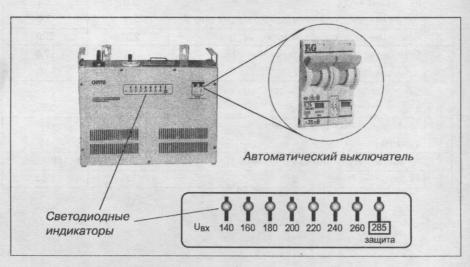


Рис. 2. Лицевая панель стабилизатора

Рис. 3. Положения автоматического выключателя

На верхней панели (рис.4) стабилизатора расположены:

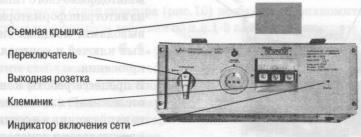


Рис. 4. Верхняя панель стабилизатора

Съемная крышка открывает доступ к клеммнику. Предохраняет от соприкосновения с токоведущими частями, не допускает попадания внутрь стабилизатора посторонних предметов. Крышка снимается только при установке или демонтаже стабилизатора и должна находиться на месте при работе стабилизатора в любом режиме, а также при хранении и транспортировке стабилизатора.

Переключатель режима работы (рис.5) «Стабилизация»-«Транзит» служит для установления режима работы. Изменять положение переключателя можно только при выключенном автоматическом выключателе, который находится на лицевой панели стабилизатора.

Выходная розетка 220~B с заземляющим контактом — для оперативного подключения нагрузки мощностью до $2~kB\tau$.

Клеммник для стационарного подключения нагрузки (рис.6). Подсоединение к клеммнику необходимо производить только при отключенной сети и в строгом соответствии с надписями на нем «Вход», «Выход», «Ф», «0».

Индикатор включения сети (рис.7). Указывает на то, что стабилизатор находится под напряжением. Светится при включении автоматического выключателя и наличии напряжения в сети.

Рис. 5. Переключатель режима работы

Рис. 6. Клеммник

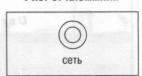


Рис. 7. Индикатор включения сети

Стабилизатор напряжения вольтодобавочного типа состоит из автотрансформатора с семью выводами, мощных симисторных ключей и контроллера напряжения.

В процессе работы контроллер отслеживает изменение входного напряжения и в соответствии с результатами измерения переключает силовые ключи, поддерживая стабильным магнитный поток автотрансформатора и стабильное выходное напряжение стабилизатора.

Рис. 8. Устройство стабилизатора

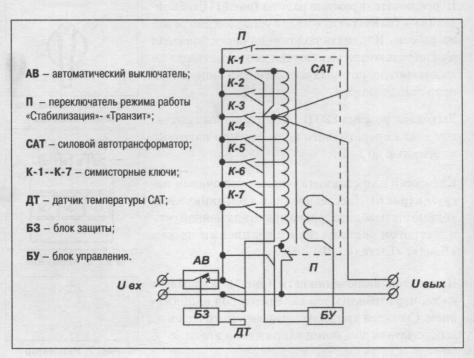


Рис. 9. Структурная схема стабилизатора

6. Установка и подключение

Перед установкой стабилизатора (рис. 10) необходимо ознакомиться с его устройством и принципом действия по п.п.1-5 настоящего паспорта.

6.1. Установка

Разместите стабилизатор на устойчивой поверхности (пол, полка, стол, стена и т.д.). Для стационарного подключения стабилизатор удобно расположить на стене вблизи ввода или электросчетчика.

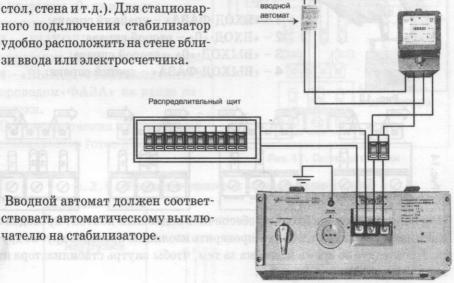
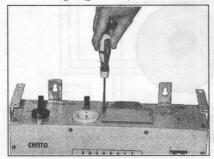



Рис. 10. Схема установки стабилизатора

6.2. Подключение

Отвинтите два винта крепления съемной крышки на верхней панели стабилизатора (рис.11).

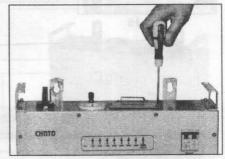
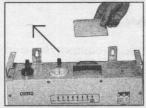
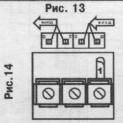


Рис. 11

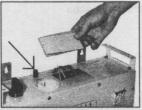


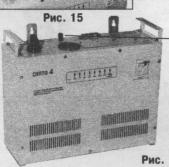

Рис. 12

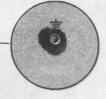
Снимите крышку (рис.12). Будьте осторожны, чтобы винты или шайбы не попали внутрь.

Подключите к клеммнику провода силового ввода и вывода в соответствии с надписью над клеммником (рис. 13-14).

- 1 «ВХОД-ФАЗА» крайний справа;
- 2 «ВХОД-«0» второй справа;
- 3 «ВЫХОД-«0» второй справа;
- 4 «ВЫХОД-ФАЗА» третий справа.






При подключении необходимо обеспечить надежный контакт проводов с зажимами клеммника, а также проверить изоляцию проводов друг от друга. Проследите во время монтажа за тем, чтобы внутрь стабилизатора не попали посторонние предметы.

Сечение проводов должно соответствовать токовой нагрузке-не менее 2,5 мм² медь.

Установите съемную крышку на место (рис.15).

Подключите заземляющий провод (рис.16).

Рис. 16

Отключите электроэнергию и подсоедините провода согласно схеме установки (рис.17).

- 1- «ВХОД-ФАЗА» соединить с проводом «ФАЗА» на выходе счетчика;
- 2 «ВХОД-«0» соединить с проводом «0» на выходе счетчика;
- **3** «ВЫХОД-«0» соединить с проводом «0» на входе нагрузки;
- **4** «ВЫХОД-ФАЗА» соединить с проводом «ФАЗА» на входе нагрузки.

После выполнения всех операций стабилизатор готов к работе.

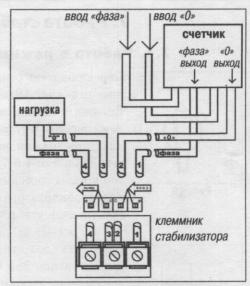


Рис. 17. Схема установки

6.2.1. Подключение к трехфазной сети

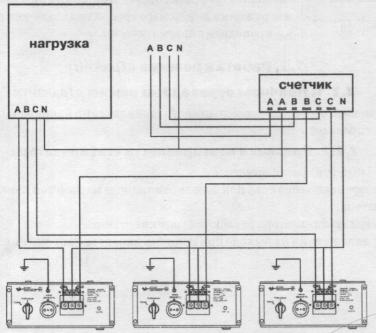
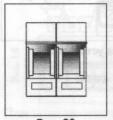


Рис. 18. Схема подключения стабилизаторов к трехфазной сети


7. Работа стабилизатора

7.1. Работа в режиме «Стабилизация»

Переключатель режима работы в положении «Стабилизация» (рис.19)

Включите стабилизатор автоматическим выключателем (рис. 20). В этом режиме на верхней панели стабилизатора должен засветиться индикатор включения сети, а спустя 4,5-7,5 с на лицевой панели - индикатор шкалы состояния входного напряжения. На выходе стабилизатора (клеммник, розетка) должно присутствовать стабилизированное напряжение 220 В +7,5-10%(+5-7,5%).

PMC. 20

В случае недопустимого повышения входного напряжения свыше 285 В (270 В) контроллер отключает все силовые ключи, обесточивает нагрузку и защищает автотрансформатор от насыщения. На индикаторной шкале входных напряжений начнет мигать светодиод «>285(270) В». При снижении входного напряжения до рабочего уровня подключение нагрузки происходит автоматически.

7.2. Работа в режиме «Транзит»

7.2.1. Причины перехода на режим «Транзит»

- 1. Временное отсутствие необходимости стабилизации напряжения.
- 2. Неисправность стабилизатора.

7.2.2. Признаки неисправности стабилизатора

- 1. Сильный гул трансформатора.
- 2. Одновременно горят два или больше светодиода на лицевой панели стабилизатора.
- 3. Внутри стабилизатора раздаются громкие стуки.
- 4. Нет напряжения на выходе при наличии входного напряжения.

7.2.3. Переключение стабилизатора из режима «Стабилизация» в режим «Транзит»

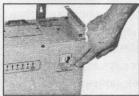


Рис. 21

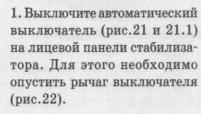
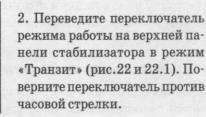



Рис. 21.1

Рис. 22

режима работы на верхней панели стабилизатора в режим «Транзит» (рис. 22 и 22.1). Поверните переключатель против часовой стрелки.

Рис. 22.1

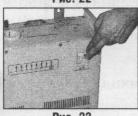


Рис. 23

3. Включите автоматический выключатель. Рычаг выключателя перевести в вверхнее положение (рис.23 и 23.1).

Рис. 23.1

Надо строго соблюдать последовательность операций при переходе в режим «Транзит», так как ее нарушение может привести к поломке переключателя режима работы и выходу из строя стабилизатора.

В положении «Транзит» на выход стабилизатора подается нескорректированное входное напряжение, но обеспечивается защита от перенапряжения на уровне 258± 5 В. При входном напряжении более 258± 5 В в режиме «транзит» срабатывает автоматический выключатель стабилизатора.

Повторное включение возможно только взведением автоматического выключателя во включенное состояние. Если входное напряжение при этом осталось выше 258± 5 В, произойдет повторное отключение, что защитит нагрузку от перенапряжения.

8. Защита стабилизатора

8.1.Тепловая защита трансформатора

Стабилизатор оснащен системой термического контроля обмотки трансформатора. В случае превышения предельной температуры обмотки прерывается подача напряжения и, следовательно, стабилизатор отключается. Стабилизатор может быть запущен только в том случае, если обмотка трансформатора будет охлаждена. До повторного включения стабилизатора причины, приведшие к перегреву, должны быть устранены, например, устранить перегрузку из-за слишком мощных электропотребителей или обеспечить лучшую проветриваемость стабилизатора.

8.2. Токовая защита

Для защиты от коротких замыканий и перегрузок применяется автоматический выключатель с номинальным током отключения 16А.

Автоматический выключатель совмещен с независимым расцепителем, обеспечивающим тепловую защиту и защиту от перенапряжения по выходу (258 В), как в режиме «Транзит», так и в режиме «Стабилизация».

8.3. Защита от перенапряжения

Во время работы в режиме «Стабилизация», при повышении входного напряжения более 285 В(270 В)происходит отключение потребителей электроэнергии, индикатор перенапряжения мигает. Когда напряжение снижается до рабочего уровня, нагрузка автоматически подключается. Во время работы в режиме «Транзит», отключение происходит в диапазоне напряжений 253-263 В. При этом отключается автоматический выключатель. Включение нагрузки необходимо осуществить взведением автоматического выключателя. Если в этот момент причина не устранена и напряжение повышенное, то выключатель снова отключит потребителей.

<u>Предприятие оставляет за собой право на технические</u> изменения.

9. Выбор модели стабилизатора

9.1. Определите сумму мощностей всех потребителей, нуждающихся одновременно в снабжении электроэнергией (Вт).

Бытовые эл. прибо	ры	Электроинструмент			
потребитель	мощность	потребитель	мощность		
фен для волос	450-2000	дрель	400-800		
утюг	500-2000	перфоратор	600-1400		
эл. плита	1100-6000	эл. точило	300-1100		
тостер	600-1500	дисковая пила	750-1600		
кофеварка	800-1500	эл. рубанок	400-1000		
обогреватель	1000-2400	эл. лобзик	250-700		
гриль	1200-2000	шлиф. машина	650-2200		
пылесос	400-2000	Электроприборы			
радио	50-250	компрессор	750-2800		
телевизор	100-400	водяной насос	500-900		
холодильник	150-600	циркулярная пила	1800-2100		
духовка	1000-2000	кондиционер	1000-3000		
СВЧ-печь	1500-2000	электромоторы	550-3000		
компьютер	400-750	вентиляторы	750-1700		
эл. чайник	1000-2000	сенокосилка	750-2500		
эл. лампы	20-250	насос высокого давл.	2000-2900		
бойлер	1200-1500	стиральная машина	1500-3000		
проточный нагреватель воды	5000-6000	TRADBARE R			

9.2. Умножьте полученную сумму на коэффициент, учитывающий изменение напряжения в сети. Значение коэффициента приведены в таблице

Напряжение	130	150	170	210	220	230	250	270
Коэффициент	1,69	1,47	1,29	1,05	1,00	1,05	1,29	1,47

Необходимо также учитывать, что электромоторы нуждаются в момент запуска в более высокой мощности, затем во время работы их мощность равна номинальной.

Мощность стабилизатора при использовании асинхронных электродвигателей, компрессоров, насосов должна превышать в 3-4 раза мощность потребителей.

10. Гарантийные обязательства

- 10.1. Гарантийный срок эксплуатации 24 месяца со дня продажи стабилизатора. Дата продажи должна быть отмечена в гарантийном талоне.
- 10.2. Гарантия распространяется на любые недостатки (неисправности) изделия , вызванные дефектами производства или материала. Замена неисправных частей и связанная с этим работа производится бесплатно.
- 10.3. Гарантия не распространяется на недостатки (неисправности) изделия, вызванные следующими причинами:
- а) использование с нарушением требований руководства по эксплуатации, либо небрежным обращением;
- б) механическим повреждением изделия в результате удара или падения;
- в) любым посторонним вмешательством в конструкцию изделия;
- г) проникновением насекомых, попаданием жидкости, пыли и других посторонних предметов внутрь изделия;
- д) действием непреодолимой силы (несчастный случай, пожар, наводнение, неисправность электрической сети, удар молнии и др.).
- 10.4. Условия гарантии не предусматривают инструктаж, консультации, обучение покупателя, доставку, установку, демонтаж стабилизатора, выезд специалиста для диагностики электрической сети и определения характера неисправности стабилизатора. Такие работы могут быть выполнены за отдельную плату.
- 10.5. Желание владельца приобрести другой аппарат не является поводом для обмена. Мнения родственников, соседей, друзей по поводу дизайна, цвета, запаха, габаритов и паранормальных явлений в работе стабилизатора основанием для ремонта, обмена и жалоб не являются.
- 10.6. Владелец имеет право на замену стабилизатора , если восстановление стабилизатора по заключению сервисного центра невозможно.
- 10.7. Производитель не несет ответственности за такие убытки, как потеря прибыли или дохода, простой оборудования, порча программного обеспечения, потеря данных и т.д.

МЕХАНИЧЕСКИХ ПОВРЕЖДЕНИЙ НЕТ. КОМПЛЕКТНОСТЬ СТАБИЛИЗАТОРА ПРОВЕРЕНА. С УСЛОВИЯМИ ГАРАНТИИ ОЗНАКОМЛЕН И СОГЛАСЕН.

подпись покупателя

Действителен по заполнении

ГАРАНТИЙНЫЙ ТАЛОН

Заполняет предприятие-изготовитель

No

Стабилизатор СНПТО - 4 МОДЕЛЬ

ДАТА ВЫПУСКА

Адрес для предъявления претензий к качеству работы: 83085,Украина,г.Донецк,ул.Баумана 1А,ЧНПП «Электромир»

заполняет торговое предприятие

МΠ

Содержание

1. Техника безопасности	3
1.1. Электробезопасность	3
1.2. Пожаробезопасность	3
1.3. Общие меры безопасности:	3
2. Назначение	
3. Технические характеристики	5
4. Комплект поставки	
5. Устройство и принцип работы	6
6. Установка и подключение	
6.1. Установка	
6.2. Подключение	
6.2.1. Подключение к трехфазной сети	11
7. Работа стабилизатора	12
7.1. Работа в режиме «Стабилизация»	12
7.2. Работа в режиме «Транзит»	
7.2.1. Причины перехода на режим «Транзит»	12
7.2.2. Признаки неисправности стабилизатора	
7.2.3.Переключение стабилизатора из режима «Стабилиза	ация» в
режим «Транзит»	
8. Защита стабилизатора	14
8.1.Тепловая защита трансформатора	14
8.2. Токовая защита	14
8.3. Защита от перенапряжения	
9. Выбор модели стабилизатора	15
10. Гарантийные обязательства	16